Design requirements for a Finnish district heating reactor considering domestic deployment and export potential HEIKKI SUIKKANEN LUT UNIVERSITY ## **Contents** - District heating in Finland and potential for DH reactors - DH in Baltic countries and Poland - Alternative use case in desalination - Domestic design - Conclusions # District heating (DH) in Finland | Production | 35.1 TWh | |------------------------|--------------------| | Produced in CHP plants | 55 % | | Distribution network | 16 090 km | | Network heat losses | 515 % (avg ~8.6 %) | | Supply temperature | 65115 °C | | Heating degree days | 5367 | #### DH production profile ## Regional DH statistics in Finland | Conital ragion | Tot. production | Fossil/bio/other (%) | Tot. capacity | CHP % | Peak demand | - | |----------------|-----------------|----------------------|---------------|-------|-------------|---| | Capital region | 11200 GWh | 77.5 / 5 / 17.5 | 6100 MW | 36.9 | 4050 MW | | #### Produced DH by fuel 2019, 38 largest producers #### DH capacity and estimated peak demand 2019 # SMR DH reactor potential in Finnish networks Theoretical number of small DH reactors that could be accommodated considering replacing fossil and bio-based fuels. | Area | Number of 24 MWth reactors | |----------------|----------------------------| | Capital region | 46 | | Tampere | 7 | | Turku | 8 | | Oulu | 7 | | Jyväskylä | 6 | | Lahti | 3 | | Kuopio | 3 | | Vaasa | 1 | | KJTS | 3 | | Pori | 2 | | Lappeenranta | 2 | | Joensuu | 1 | | Rovaniemi | 2 | | Seinäjoki | 2 | | Hämeenlinna | 1 | | Kouvola | 1 | | Mikkeli | 1 | | Porvoo | 1 | | Rauma | 1 | | Total | 98 | ## DH in Baltic countries and Poland Estonia, Latvia, Lithuania and Poland were analysed for export potential of the Finnish DH reactor. | District heat | EST | LVA | LTU | POL | |------------------------|------------|-------------|-------------|-------------| | Production
(TWh) | 4.5 (2017) | 7.51 (2020) | 8.98 (2018) | 74.2 (2018) | | Network
length (km) | 1 455 | 2 000 | 2 885 | 20 139 | | CHP share | 50% (2017) | 71% (2018) | 41% (2018) | 66 % (2018) | | Grid heat loss avg. | 21 % | 11.8 % | 15,3 % | 11.8 % | | Heating degree days | 4 176 | 3 806 | 3 807 | 3172 | #### DH in Baltic countries and Poland • Potential regions in EST, LVA and LTU correspond to larger or medium sized Finnish cities in DH consumption, Poland is on another scale as the 2nd largest DH producer in the EU. Estonia (rough estimation) | Region | DH cons.
(GWh) | Рор. | |-------------|-------------------|---------| | Harju | 1 664 | 605 029 | |
Tallinn | 1 186 | | | Ida-Viru | 538 | 134 259 | | Tartu | 373 | 153 317 | Latvia | Region | DH cons. (GWh) | Pop. | |---------|----------------|---------| | Riga | 2 313 | 632 614 | | Latgale | 521 | 260 226 | | Pierīga | 480 | 370 589 | Lithuania (very rough estimation) | Region | DH cons. (GWh) | Pop. | |----------|----------------|---------| | Vilnus | 1 438 | 820 000 | | Kaunas | 985 | 562 000 | | Klaipėda | 559 | 319 000 | Poland | Region | DH cons. (GWh) | Pop. | |---------------|----------------|-----------| | Mazowieckie | 13 268 | 5 425 000 | | Śląskie | 9 310 | 4 492 300 | | Dolnośląskie | 4 945 | 2 891 400 | | Łódzkie | 4 917 | 2 438 000 | | Wielkopolskie | 4 832 | 3 496 500 | | Pomorskie | 4207 | 2 346 700 | | Małopolskie | 4086 | 3 410 400 | | | | | ## Alternative use case in desalination - In addition to DH, desalination seems as a potential application for low temperature LWR. - Huge need for desalination in some parts of the world, e.g., Middle East and North Africa have almost 50 % of the current production capacity. - Highly energy intensive and majority of desalination plants use fossil fuel based energy. #### Alternative use case in desalination Desalination can use heat and/or electricity as various techniques exist. Multi-stage flash (MSF) and multiple effect distillation (MED) take heat at 70-130 °C. Membrane processes like reverse osmosis (RO) utilize electricity. Energy consumptions of different desalination processes (Data: Ghaffour et al. 2013. Desalination 309, p. 197-207 | | Thermal
energy
(kWh/m³) | Electrical
energy
(kWh/m³) | Typical
brine feed
T (°C) | |-----|-------------------------------|----------------------------------|---------------------------------| | MSF | 7.512 | 2.54 | 90120 | | MED | 47 | 1.52 | 6075 | | RO | - | 0.54 | ambient | Coupling a nuclear heat plant with MSF or MED desalination facility (Figure: IAEA) # Domestic design - Two Finnish reactor concepts already proposed with some novel design solutions - Existing domestic computational tools, experimental capabilities and expertise for reactor design and demonstration of the functioning of systems and components - Major components such as pressure vessels and heat exchangers of moderate size and for the modest operating pressures and temperatures could well be manufactured in Finland # Pre-design of a heat exchanger for a small DH reactor Already some design optimization performed for a shell and tube heat exchanger for a small DH reactor operating at natural circulation. Secondary loop water in sl #### Conclusions - Finnish DH networks could accommodate tens of small reactors replacing fossil and bio-based fuels. - A few small DH reactors could likely be exported to the Baltics (capital regions) while Poland represents a significant potential market considering its current DH capacity and production profile. - Coupling with MSF or MED desalination processes seem as a promising alternative use case with significant export potential. - Good domestic capabilities to design, manufacture and test components and systems for Finnish DH reactor; most straightforward and cost effective when components represent standard equipment. - A DH reactor fit for Finnish DH networks should have a size in few tens of MW_{th} considering deployment also outside capital region. It would preferably be capable of operating at part load and need to be cost competitive with ~9 month annual use.